Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci.

نویسندگان

  • Guruprakash Subbiahdoss
  • Shahriar Sharifi
  • Dirk W Grijpma
  • Sophie Laurent
  • Henny C van der Mei
  • Morteza Mahmoudi
  • Henk J Busscher
چکیده

Biofilms on biomaterial implants are hard to eradicate with antibiotics due to the protection offered by the biofilm mode of growth, especially when caused by antibiotic-resistant strains. Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used in various biomedical applications, such as targeted drug delivery and magnetic resonance imaging. Here, we evaluate the hypothesis that SPIONs can be effective in the treatment of biomaterial-associated infection. SPIONs can be targeted to the infection site using an external magnetic field, causing deep penetration in a biofilm and possibly effectiveness against antibiotic-resistant strains. We report that carboxyl-grafted SPIONs, magnetically concentrated in a biofilm, cause an approximately 8-fold higher percentage of dead staphylococci than does gentamicin for a gentamicin-resistant strain in a developing biofilm. Moreover, magnetically concentrated carboxyl-grafted SPIONs cause bacterial killing in an established biofilm. Thus magnetic targeting of SPIONs constitutes a promising alternative for the treatment of costly and recalcitrant biomaterial-associated infections by antibiotic-resistant strains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of surface modified magnetic Iron Oxide nanoparticles and study of their colloidal behavior

In this work, we report synthesis of surface modified superparamagnetic iron oxide nanoparticles (SPION) by co-precipitation method using FeSO4.7H2O and Fe2(SO4)3.5H2O as precursors and trisodium citrate dihydrate as surfactant. Surface modification of the as prepared samples was performed in pot by sol-gel precipitation method u...

متن کامل

Surface-Modified Superparamagnetic Nanoparticles Fe3O4@PEG for Drug Delivery

In this work, we report on the synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, CTAB as cationic surfactant and butanol as a cosurfactant. Surface modification have been carried out by using poly(ethyleneglycol) (PEG). The structure,morphology, and magnetic properties of the products were characteriz...

متن کامل

Preparation of surface modified magnetic Iron Oxide nanoparticles and study of their colloidal behavior

In this work, we report synthesis of surface modified superparamagnetic iron oxide nanoparticles (SPION) by co-precipitation method using FeSO4.7H2O and Fe2(SO4)3.5H2O as precursors and trisodium citrate dihydrate as surfactant. Surface modification of the as prepared samples was performed in pot by sol-gel precipitation method u...

متن کامل

Surface-Modified Superparamagnetic Nanoparticles Fe3O4@PEG for Drug Delivery

In this work, we report on the synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, CTAB as cationic surfactant and butanol as a cosurfactant. Surface modification have been carried out by using poly(ethyleneglycol) (PEG). The structure,morphology, and magnetic properties of the products were characteriz...

متن کامل

Magnetic iron oxide nanoparticles, Polyethylene glycol, Surfactant, Superparamagnetic, Chemical co-precipitation

In this study, magnetic iron oxide nanoparticles (Fe3O4) with the size range of 20-30 nm were prepared by the modified controlled chemical co-precipitation method from the solution of ferrous/ferric mixed salt-solution in alkaline medium. In this process polyethylene glycol was used as a surfactant to prevent the solution from agglomeration. The prepared magnetic nanoparticles were characterize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2012